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Abstract—In order to shorten the avionics architecture
development time, the Jet Propulsion Laboratory has
developed a model-based architecture simulatin tool
called the the Avionics System Architecture Tool
(ASAT). ASAT is consisted of a library of components
models that can be quickly assembled into an avionics
system model. The simulation of the avionic system is
driven by a scenario script that captures the high level
description of the spacecraft operations. Hence, the
avionic system architecture can be validated and system
level design problems can be uncovered before any
hardware and software development. In addition, since
the component models can easily be added, changed, or
removed from the system model, this tool can also
perform trade studies among architecture options. This
tool has recently been applied to model the avionics
architectures of the Europa Pathfinder mission study
project. The results of that application are also reported in
this paper.
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1. INTRODUCTION

Since space missions are expensive and risky, and space
environments are very unforgiving, design mistakes are
often extremely difficult or impossible to correct. As a
result, mistakes in spacecraft system engineering can
result not only in multi million dollar overruns, but also
compromised science collection, mission redesign, and
total loss of the spacecraft.

Over the years, the Jet Propulsion Laboratory (JPL) has
developed a system engineering process for spacecraft
development. This process includes mission conceptual
development, system definition, and architecture design.
While this process has been successfully applied to many
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flight missions, it has been costly and lengthy because it
requires many meetings of system engineers in order to
establish the requirements and specifications. Worse yet,
these traditional textual requirements and specifications
are often error prone, ambigious and sometimes contain
many oversights and mistakes. With these specification
problems often not realised until final test or even later,
during the mission itself, the re-engineering effort
involved can often be extremely expensive. Therefore,
JPL has initiated a series of efforts to develop a set of
system engineering tools to improve the process. One of
these tools is the Avionics System Architecture Tool
(ASAT).

ASAT focuses only on the avionics system of the
spacecraft design. The process of avionics system design
is similar to, and in fact driven by, the spacecraft design
process. Hence, in the mission concept phase, the
avionics system engineer has to estimate mass, power,
volume, and cost of the avionics system based on the
mission concept. The avionics system engineer may have
to negotiate with the spacecraft system engineer if the
estimates exceed the amounts allocated. Eventually, these
estimates become the mission level requirements for the
avionics system. In the system definition phase, system
requirements are developed. These requirements are
evaluated by the avionics system engineer, who then
creates a high-level avionics architecture. Mass, power,
volume, and cost estimates are revisited based on the
high-level architecture. The system performance and
reliability are estimated and compared against the mission
requirements. In the architecture design phase, details of
the avionics architecture are developed. Trade studies are
also employed to consider different architecture options.
Detailed requirements are generated for implementation.
All  estimates and functional correctness of the
architecture are verified through design reviews [1].

Figure 1 outlines this process.

An experienced avionics system engineer can complete
the mission concept and system definition phases in a
relatively short time with the help of simple tools such as
spreadsheets. This is because these two design phases can
tolerate a rather large margin of error in the estimates and



because many details of the spacecraft system have not
been defined. This is because these two design phases can
tolerate a rather large margin of error in the estimates and
because many details of the spacecraft system have not
been defined. In contrast, the architecture design phase
involves generating details of the architecture where
functional correctness is a major concern. The margin of
error in the estimates also has to be tightened because it
has direct impact on the cost and schedule in the
implementation phase.
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Figure 1 — Simplified Systems Engineering Process

The activities of the architecture design phase lend
themselves to using executable architecture models as an
analysis tool. Executable architecture models can verify
architecture functions and estimate accuracy. They also
allow the engineer to explore system dynamics such as
interactions between components and time dependent
behaviours.  However, executable architectures and
related development tools have their own requirements.

In order to support trade studies, the architecture model
must be flexible and modular, made up of components
that can be easily added, removed, or exchanged while
verifying the consistency of the component interfaces.
Such flexibility can also support reuse of architecture
models. That is, once an architecture model is captured,
the model itself or its components can be used again to
model other avionics systems with sometimes only
minimal changes. Furthermore, the simulation results of
the architecture model should be easily captured and
formatted to guide the development of the implementation
requirements. Finally, since the architecture model is
executable, it should be able to be integrated with other
subsystem models to support

spacecraft level simulations. These simulations being used
to verify command sequences in mission operations.
Therefore, these requirements suggest a more
sophisticated tool than a simple spreadsheet.

The role of ASAT in the spacecraft development process
is depicted in Figure 2. The primary objective of ASAT is
to help the avionics system engineers to develop
architecture models to meet these needs.
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Figure 2 — Role of ASAT in Spacecraft Design Process

2. APPROACH

Initial ASAT development included the capture and
refinement of users needs for a system engineering
oriented tool suite. Interviews with members of the user
community helped develop sets of needs in four main
areas: ease of use, capability (vis-a-vis competing tools),
validated components, and cost effectiveness. These
needs were then analysed to determine sets of
effectiveness measures in each area. These effectiveness
measures are, in turn, evaluated to determine
interrelationships, rank, and cost. The results being a set
of prioritised requirements for ASAT. Table 1 describes
how each of the users needs was sastisfied, with the most
important appearing first in the table.

Based on feedback from the user group sessions discussed
previously, it was clear that ASAT should focus initially
on ease of use and cost effectiveness. To address these
user concerns, the team developed two key mechanisms:
plug-and-play and a standard data exchange infrastructure
between core X2000 components. These mechanisms will
be described in more detail later in this paper. To speed up
the development of ASAT the team wanted to use an
existing System Engineering modelling tool that could
provide the necessary tool requirements addressed by the
users. The next section of this paper describes the
reasoning behind selecting Statemate Magnum from I-
Logix to fulfil this need. Additional capabilities (see table
1), would then be added to the tool, to address the
application specific requirements from the users.

In order to prove the concept is achievable, ASAT uses
the X2000 avionics architecture as an example for
prototype development. The X2000 is a technology
program at JPL funded by NASA to develop system
architecture and technologies for future spacecraft. The
X2000 architecture is highly scalable and adaptable to a
wide range of space missions. A typical instance of the
X2000 architecture is shown in Figure 3. Therefore
developing ASAT in conjunction with the X2000 will



demcenstrate the capability to capture this architecture and
then allow the user the ability to replace components or
modify the architecture with minimum effort.

Table 1. The ASAT Approach to Meeting User Needs

User Need Satisfaction/Effective Measure

Ease of Use « Design and implement technologies
common to all components that
support user concepts of ease of use,
including:

Plug-and-Play

+ Data Driven

Capability + Design and implement architecture
components of appropriate accuracy
and fidelity

- Design and implement support tools

that allow users to do things

competing tools do not support

Use development tools that support

analysis of architecture dynamics

Validation + Design and develop components
based on standard specification (e.g.
IEEE Std 1394a)

Cost « Components are reusable

Effectiveness | * Architectures are reusable

+ Reduce architecture development
time

+ Reduce trade study time

13921 Bus

12C Bus

PCl Bus

Microcontrolier . Microcontroller

Figure 3 — X2000 Architecture Model

3. DEVELOPMENT OF THE TOOL SUITE

JPL has attempted model-based system engineering
previously. Those models tried to describe the very
detailed intefaces between all components used in the
architecture model. Although this approach is not
incorrect, subsequent experience has shown it is
prohibitively time consuming as it does not lend itself to
rapid design trades that are paramount in the architectural
design phase.

Based on this observation, ASAT has taken a different

approach. This new approach utilized a standard multi
layer interface, communications protocol, infrastructure
support functionality, architecture configuration file, and
scenario files. The standard interface and protocol enable
the component models to be connected in a plug-and-play
fashion.  This plug-and-play approach and standard
interface allows system engineers to focus on the
investigating system level issues and evaluating the
avionics architecture design of the system rather than
getting caught up on implementation specific issues.
Thus, the system engineer can compose or modify
architecture model for trade-off studies in quick turn
around time.

The standard interface can be broken down into muitiple
layers as shown in Figure 4. The diagram shows the
connections between three components. Each component
features core, implementation layer and ASAT layers.
The core layer represents the component’s core
functionality. For example, if a component represented an
IEEE 1394 bus, the core would represent the dynamic
behaviors, protocols, timing, etc that are associated with
that bus. To describe the implementation layer and ASAT
layer its best to consider an example architecture setup. In
Figure 4, component one could represent a Flight
computer, component two representing an IEEE 1394 bus
and component three representing a Microcontroller. The
implementation layers within a component describe the
true interfaces, necessary protocol and timing
functionality, within the implementation, that would be
necessary to interface one component core to another
component core. For example, if one was interfacing a
Flight computer with a PCI bus, a host bridge interface
would be necessary. Alternatively, interfacing the PCI bus
with the IEEE 1394 bus would also require some
dedicated hardware that could provide this capability.
Finally, to facilitate a component plug-and-play
architectural modelling environment with rapid design
trades allowable, each component interfaces through the
ASAT layer and the infrastructure support functionality.
The ASAT layer describes a special communications
protocol that allows all ASAT components within the
architecture to communicate.
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Figure 4 — The ASAT layering approach

The infrastructure provides the user with the development
enviroment in which architecture models are developed
and interfaced. The architecture configuration file defines
how components are connected to each other. Any given
architecture requires a correct configuration file.
However, users can define multiple architectures using the
same component set by defining different configuration
files. For a typical simulation run, the components which



make up the system architecture will automatically find
out how they are connected and interact with each other.
This integrated architecture model will then be stimulated
by a the scenario file and any measurements generated by
the simulation will be captured for future analysis.

This approach reduces the process of building and testing
an architecture into five steps:

1. Place the components in the architecture development
environment

2. Connect each component to the architecture support
infrastructure

3. Build an architecture configuration file describing
component connectivity

4. Build scenario files to exercise the architecture

5. Run the scenario files through the architecture

This multiple layer approach can also reduce the
development time of individual component models.
When a new component model has to be developed and if
the component is a variation of an existing component,
then only the implementation layer need to be modified.
If a similar component does not exist in the library, the
core and implementation layers have to be developed but
the interface layer will remain unchanged..

4. RESULTS OF THE PROTOTYPE

The plug-and-play and common data exchange
infrastructure has proven to be very effective. Tables 2
and 3 show component development time and X2000
architecture integration time respectively. Table 2 shows
that the average time to build a component model was
about 12 weeks. The conventional wisdom would expect
the integration time would take at least that much time to
integrate all the component models. However, Table 3
shows that the integration time for two variations of the
X2000 architecture model, one has the 12C as the system
bus (see the center bus in Figures 5) and the other with the
PCI as the system bus. It is shown that the integration for
the the PCI and I2C versions of the architecture model
took only 1.5 days and 3 days, respectively. This
experiment demonstrates the flexibiity of the plug-and-
play infrastructure of ASAT.

Table 2. Component Model Development Time

PCI 2C Processor | IEEE 1394a
Component High Medium | Medium | Very High
Complexity
Intended High High Medium | Very High
Fidelity
Learn/ 2-3 Weeks 1 Month | 2 Weeks 3 Months
Specification
Time
Build Time 1 Month 2 Months | 3 Weeks >1 Month
Level Of Very Beginner Expert Very
Modeling Experienced Experienced
Expertise

Table 3. X2000 Architecture Model Integration Time

Communication Among | Integration Test
Modeling Engineers

PCI Qe 0.5 Day 1 Day
Architecture
Example
12C 0.5 Days 1 Days 1.5 Days
Architecture
Example

Note: The PCI model was used during the development of the plug-and-
play infrastructure. Therefore, no learning of the PCI model is

required in the architecture example.
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5. MODELING THE EUROPA PATHFINDER
AVIONICS ARCHITECTURE WITH ASAT

After the successful prototype, ASAT was used to model
the Europa Pathfnder’s avionics architecture. The Europa
Pathfinder is a task to study the mission of landing on
Europa, one of Jupiter's satellites that has a liquid ocean
underneath the water ice crust and might be able to sustain
life. The study includes developing a conceptual design
for the avionics system of the lander.
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Figure 6 — Europa Pathfinder Avionics Architecture

@ Orbiter Interface

The initial avionics system concept consists of a
RADG6000 processor, subsystems such as telecom-
munication and power control and distribution, and a suite
of instruments including a surface imager, a Raman
spectrometer, micro-seismometer, radiation sensor, and



accelerometer. The Europa Pathfinder avionics system
architecture is shown in Figure 6.

One important consideration for the Europa Pathfinder
avionics system is the communication between the lander
and the orbiter. The lander has a shape of a disc with a
diameter of about 1.5 meters. The mission study has also
chosen passive landing using airbags instead of active
navigation. Since the surface of the Europa has many rifts,
after the airbags are deflated and retracted, it is possible
that the lander wouid fall into one of the rifts. In that
case, the lander will have only a 8-minute time window to
communicate with the orbiter. Consequently, much data
including images have to be transmitted to the orbiter in
this time window. This implies the interface between the
processor and the telecommunication system has to have
very high data rate. Another important consideration is
the power consumption of the avionics system since the
entire mission is powere by battery.

Based on these considerations, the mission study has
proposed to use the high speed 12C bus as the interface
between subsytems. The high speed 12C bus is a collisoin
detection multi-master bus with a data rate of 3.4
Mbits/sec. There are two I2C buses in the architecture.
The first I12C bus is dedicated to the interface between the
processor and the telecom-munication subsystem. The
second I2C bus is used as the system bus between the
processor and all other subsystems.

Based on these inputs, the ASAT team has developed an
architecture model for the Europa Pathfinder, which is
shown in Figure 7. The architecture model is driven by a
scenario script that captures the operations of the mission.
The scenario provided by the Europa Pathfinder mission
study team is shown in Figure 8. The scenario is
translated into the ASAT scenario language. An example
of the scenario script is shown in Figure 9.

Current Mass Storsge
UTUSaR0 Byres
Current Storage Urilization
=
Max Storage Unilization
008
TLM Data Collected
3397380 Bytes
TLM Datz Downlinked

Cotteriion ]

Figure 7 — ASAT Model for Europa Pathfinder Avionics

The effectiveness of the plug-and-play approach is proven
once again. The architecture model was developed in 20
days, from the time when the ASAT team first received
information to the completion of the working model. In
fact, the majority of the time was spent on developing the
high speed 12C bus model and the instrument models.
The integration of the component models took only 2 to 3
days.
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Figure 8 — Europa Pathfinder Data Collection Scenario

!
t Execute command at 0.000000
!

EXECUTION_TIME 0.0
MSG_SUBASSY_1 PROCESSOR
MSG_ID_11

PRIORITY_1 A

MSG_SUBASSY_2 ACCELEROMETER
MSG_ID_21

PRIORITY_2 A

PAYLOAD_CMD EUROPAPATHFINDER_SENDPERIODIC
ACTION WRITE_ENABLE
DIRECTION FORWARD

LENGTH 5

USER_TAG 1

MSG_ID 4

DATA_LENGTH 13.0
DATA_PERIOD 1.0

REPEAT 899
SENDTO_SUBASSY PROCESSOR
SENDTO_ID 1

SENDTO_PRIORITY A

END MSG

Figure 9 — ASAT Scenario Script for Europa Pathfinder

The simulation result has shown that the maximum
utilization of the system high speed I2C bus was only 3%.
That raised the question of whether a fast 12C bus (400
kbits/sec) can handle the bus traffic. Hence, the ASAT
team replaced the high speed I2C model with a 400
kbits/sec model and run the simulation again. It was
found that the bus utlization was only 17%. Since
developing a 400 kbits/sec I2C bus is less expensive than
a 3.4 Mbit I2C, this simulation suggested a less costly
alternative to the original architecture.

However, in the 400 kbits/sec 12C bus architecture, we
have also observed that the processor was not able to
communicate with other subsystems when the imager is
sending data to the processor. This was not observed in
the high speed 12C bus architecture. After some analysis,
we have found that this was caused by the differences in
the arbitration scheme between these two versions of the
12C bus. In the 400 Mbits/sec 12C bus, the bus arbitration
priority is based on the receving node address. Since the
processor was assigned to the lowest address (highest
priority), when the imager sent a large image to the
processor, its data blocked all other nodes including the
processor itself from sending their data onto the bus. On
the other hand, since the high speed I2C bus arbitrates
with the sending node address, the processor was able to
preempt the imager. We solved this problem by changing



the scenario script, so that the image data are sent in small
blocks to give the other subsystems opportunities to
arbitrate for the bus.

Another consideration of using the 400 kbits/sec 12C bus
is the bandwidth requirement between the processor and
the telecommunication system. It is a fact that the 400
kbits/sec data rate would not be able to transmit all data to
the telecommunication system in 8 minutes as required.
On the other hand, we have noticed that only a few
images would be collected in every 24 hours period.
Hence, it is not too difficult to increase the buffer size in
the telecommunication subsystem to store those images.
This would allow data to be transmitted to the
telecommunication subsystem at a lower rate but in a
longer period of time.

Therefore, many observations and inspiratons were
obtained from this architecture model, which was
developed in a much short time than the traditional
modeling approach at JPL. The architecture development
time is expected to be significantly reduced when more
component models would have been developed. In fact,
since the 400 Mbits/sec I2C had been developed before
this exercise, replacing the high speed 12C model with the
400 Mbits/sec 12C model took less than a day.

6. CONCLUSION

In this paper, we have described the process of system
engineering in spacecraft avionics design and why a tool
based approach that captures system dynamics is essential
for providing robust design requirements. In order for us
to provide a complete solution to our users we initially
identified their concerns about the usefulness of a tool
based solution and then responded by concentrating on
key tool ease of use and cost effectiveness measures. In
order for us to acomplish many of our users concerns we
adopted a COTS systems engineering tool, Statemate
Magnum, with a unique layered component standardised
interface. To fully prove our concepts and ideas, the
X2000 architecture was used as our technology
demonstrator. From this we were able to demonstrate the
efficiency of the approach and the results show that plug-
and-play reduces architecture  development and
modification time. Then, we applied to tool to a real
world avionics architecture and it was shown that the
capture and demonstration of system dynamics can lead to
many findings about an avionics architecture design.

7. FUTURE WORK

Although the plug-and-play infrastructure  has
significantly reduced the time to integrate components in
the architecture model, the development of individual
models still takes a relatively long time. Opportunities to
reduce component development cycle time must be found
and exploited. Ways to standardize protocols between
components, such as data buffering and handshaking, to
addreess component interoperability concerns must be
investigated. It must also be stressed that the current
product is only a proof of concept. A detailed analysis of

the whole range of effectiveness measures in the users’
areas of concern must be undertaken. This would lead to
a robust set of requirements of an integrated system
engineering tool such as ASAT.

One of the key concerns of our users is model verification
and validation. A component validation/certification
process must be developed to gamer user trust.
Verification is being addressed by systematically testing
each and every behaviour of all components to verify our
implementation. Once we are convinced that we have
implemented the models properly (i.e. they do what we
intended them to do), it is necessary to validate that our
models yield accurate results. We are planning to do this
through model design reviews, but also by comparing the
results of the simulation against a hardware testbed
currently being built at JPL. Our plan is to produce
several scenarios that represent different architectures that
can be simulated by our tool, and compare our results to
identical scenarios executed by the hardware testbed.
Each new component model added to our suite will be
required to undergo similar verification and validation
procedures. Therefore, a feature rich set of functional
component models that have being fully verified and
validated, will allow our users to perform accurate
analaysis, yielding results that would be similar to using
the real hardware architecuture.
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